
Visual Computer manuscript No.
(will be inserted by the editor)

Graph-based Global Illumination

Brian C. Ricks · Parris K. Egbert

Received: date / Accepted: date

Abstract Global illumination algorithms are used in

numerous commercial and academic settings; however,

these algorithms are still considered slow. We show that

ray casting global illumination algorithms could con-

verge faster by taking advantage of redundant ray casts,

and we propose a technique for quickly identifying and

reusing these ray casts. Graph-based global illumina-

tion, our general-purpose ray casting optimization, uses

these variance-reducing techniques to accelerate render-

ing. Unlike other algorithms that reuse information, our

algorithm can handle all BRDF types and does not

have noticeable artifacts. By optimizing path tracing

with graph-based global illumination, on average the

new algorithm converges in half the time.

Keywords Global Illumination Optimization · Monte

Carlo Methods · Path Tracing Optimization

1 Introduction

Global illumination research has improved the visual

quality of rendering and has had some success in reduc-

ing rendering times, yet global illumination algorithms

are still considered slow. Many light sample calcula-

tions done while approximating the rendering equation

are repeated, and this information is rarely reused.

We believe the intelligent reuse of light samples will

be a driving force in future global illumination research,

and we have developed a new, general-purpose global

B. Ricks
Brigham Young University, Provo, Utah, USA
E-mail: bricks@byu.net

P. Egbert
Brigham Young University, Provo, Utah, USA
E-mail: egbert@cs.byu.edu

illumination optimization to do so. Our contributions

include our new technique, which allows repeated light

samples to be reused to reduce image variance, as well

as our optimization techniques, which allow this to be

done more quickly.

2 Light Sample Reuse

Kajiya [8] used path tracing as an unbiased way to sam-

ple the rendering equation. We have found that with

path tracing and its numerous extensions many light

sample calculations are repeated or are highly similar.

Reusing these samples will speed up rendering, with the

theoretical capacity to speed up convergence in an n2

fashion.

As an example, consider Figure 2 showing light

paths starting at different pixels. Both light paths in-

tersect near surface point β and then sample the light.

When the algorithm finishes, there are two samples

used in determining how much direct illumination ar-

rives near β. If this information is not shared, each

light path only has one sample. If this information were

shared, each light path would have access to two light

samples, as if there had been four light samples total. If

a third light path intersected near β and this informa-

tion were shared, the three direct light samples could

be used in all the three light paths, as if there were

nine ray casts. If n light paths intersect near the same

surface point, then each light sample could be used n

times, resulting in an n2 growth in overall information.

Reusing light samples in this way can rapidly increase

information, thus reducing the variance in the rendered

image.



2 Brian C. Ricks, Parris K. Egbert

Fig. 1: By reusing ray casts, graph-based global illumination renders these and other images with reduced variance.

3 Implementation

We call our optimized path tracer graph-based global

illumination and show that our optimization speed-up

its convergence. Graph-based global illumination turns

path tracing into a two pass biased Monte Carlo al-

gorithm: First, visibility information is calculated and

stored, and second, radiance transfer values are calcu-

lated and reused to generate an image. Our experiments

show that optimizing path tracing in this way almost

doubles its convergence speed.

3.1 First Pass: Storing Visibility

The first pass calculates visibility as it recursively

shoots rays into the scene and stores the information

for reuse later. Our optimization focuses on identify-

ing close points without adding meaningful bias and on

storing visibility for easy reuse.

We discretize our scene into axis-aligned voxels

(dashed circles in Figure 2) with the assumption that

points in the same voxel can share visibility informa-

tion. To prevent n3 memory consumption, voxels are

created dynamically, and since we find voxels around

surfaces in a scene, this means we consume only about

n2 memory usage if there is no participating media.

When a ray collides with a point, the algorithm deter-

mines which voxel that point would be in if the voxel

existed, and that voxel’s center becomes the key to a

hash. If a voxel already exists at that location, it is used

to store information; otherwise, a new voxel is created

and added to the hash table. Each voxel stores pointers

to the other voxels to which it is visible. This generates

a sparse visibility graph where entry (vx, vy) indicates

whether vx and vy are visible.

In Figure 2, say that voxel v1 surrounds β. As our al-

gorithm proceeds, the first light path would collide with

β while calculating the first light path. Since there is no

voxel for β, v1 would be created. The second light path

then collides near β. Since β is already contained in v1,

this second light path would use v1 to store the results

of future ray casts. Since v1 is in both light paths, both

light paths would automatically know about both direct

light samples. Voxels were only used to store similar ray

casts, they do not affect the starting point of future ray

casts.

3.2 Second Pass: Generating a Final Image

The second pass runs recursively starting at the camera

and uses information in the visibility graph to quickly

calculate a final image. For Figure 2, the second pass

would start at the left pixel and use information from

the first pass to determine if it is visible to point α.

Searching the voxels visible to α, the recursive function

would find that β had been found when doing a ray

cast starting at α. The recursive function would find

two light samples in voxel v1. The direct lighting of β

would then be calculated, cached, and used to calcu-

late the radiance transfer from β to α and then to the

camera pixel. When calculating the right pixel, the re-

cursive function would find that the radiance from the

light source to β had already been calculated, so the

recursion would stop and the cached value would be

used.

Notice the optimizations in our method: instead of

only two direct light samples in the two light paths,

the equivalent of four direct samples were used, thus

increasing the information available in an n2 way. Also,

the recursion in the second light path stopped early

because of the caching. If in the example more light

paths had intersected in v1, the optimization would be

even more dramatic. Note also that radiance transfer

information can be cached at any depth.

To cache radiance transfer, a list of color values is

added to each voxel pointer. This list is a sparse graph

where entry (vx, vy,∆) represents radiance transfer

from vy to vx with a light depth of ∆. To handle var-

ious BRDFs, there is a radiance transfer list for each

BRDF. This second pass can run significantly faster



Graph-based Global Illumination 3

Fig. 2: Example of redundant ray casts. On the left,

a light path hits α, then β, and then samples the light

source. On the right, a second light path collides near β

and samples the light source. Our algorithm effectively

shares these similar ray casts.

than the visibility pass because there are no expensive

ray casts and because when a radiance sample is reused,

the recursion stops, thus pruning out huge parts of the

recursive tree. Table 1 shows how much faster path trac-

ing converged when optimized using graph-based global

illumination.

The use of graphs in graph-based global illumination

consumed about 8 GB of RAM to generate our test

images in Table 1. For very large images, we render

until we run out of memory, save the image, and then

start over, doing a weighted average each time.

3.3 Differences From Previous Algorithms

We now compare and contrast graph-based global il-

lumination with other algorithms. Note that our algo-

rithm is a ray casting optimization, which means it can

easily extend algorithms like Metropolis Light Trans-

port [11] and bidirectional path tracing [9] without com-

peting with them.

Bekaert et al.’s [1] work recognized the importance

of reuse in rendering. In their work, groups of light

paths were calculated together. When a secondary light

ray was found for one path, the other paths shot rays to-

wards that same location. Although this addresses the

same problem as our work, the algorithm is very dif-

ferent from ours. Our algorithm breaks the rendering

process into two distinct passes, which allows up to an

n2 increase in information. Bekaert et al.’s algorithm

only shares between small groups of light paths. Also,

since their algorithm shares information only across a

few light rays, it has distinct artifacts. Our results have

no such artifacts.

Irradiance caching is a popular technique for diffuse

scenes (see [12] and [4]). These algorithms work where

the appearance of diffuse surfaces changes slowly. Since

diffuse bleeding is so computationally demanding, irra-

diance caching samples diffuse lighting and interpolates

those values across the surface. Graph-based global illu-

mination differs from irradiance caching because irradi-

ance caching does best on scenes where “indirect illumi-

nance tends to change slowly over a surface”[12] while

graph-based global illumination can effectively render

any type of light interaction regardless of BRDF. For

example, irradiance caching is known to do poorly on

scenes with bright, localized diffuse lighting. As shown

in Table 1 and Figure 1, graph-based global illumina-

tion renders these types of scenes accurately.

Radiosity algorithms (see [5], [3], and [10]) do well

on diffuse surfaces and other work has extended the ca-

pacity of radiosity to reflective scenes [2]. Radiosity is

similar to graph-based global illumination in that both

break down the scene into patches. However, unlike ra-

diosity, graph-based global illumination optimizes ray

casting algorithms so it is designed to handle any BRDF

type.

Photon mapping [7] is a two pass algorithm that

sends photons out from light sources. As photons collide

with surfaces, their locations and intensities are stored

and used in the second pass to approximate the light

intensity at that location. An extension [6] works espe-

cially well for light sources behind glass. Photon map-

ping is similar to graph-based global illumination since

it stores information about ray casts. However, pho-

ton mapping focuses on storing radiance values while

graph-based global illumination focuses on both visi-

bility and radiance values. Also, photon mapping does

a pass starting at the light sources and then a pass

starting at the camera. Graph-based global illumina-

tion starts at the camera in both passes and only casts

rays in the first pass, thus making the second pass go

quickly.

Graph-based global illumination is a novel global il-

lumination algorithm optimization capable of rendering

a wide variety of scenes quickly. Although it shares some

similarities with previous algorithms like those just dis-

cussed, the way we cache visibility and radiance transfer

presents a new paradigm for thinking about sampling

a scene. Additionally, graph-based global illumination

is designed as a general-purpose optimization that can

benefit any ray casting algorithm.

4 Results and Future Work

We compared the speed of graph-based global illumi-

nation with path tracing in speed and accuracy tests to

determine if path tracing converged faster with our op-

timization. We chose 12 scenes that contained different

lighting effects, primitives, and surface area as shown



4 Brian C. Ricks, Parris K. Egbert

(a) 34% (b) 77% (c) 39% (d) 72% (e) 34% (f) 61%

Table 1: Example images from our tests showing how much faster path tracing converged when optimized with

graph-based global illumination. Results lower than 100% meant our optimization sped up convergence. Across all

12 test scenes, our algorithm averaged a 52%, meaning graph-based global illumination ran almost twice as fast.

in Table 1. For each scene, we increased the rays per

pixel to see how the two algorithms compared in terms

of speed and error in a total of 240 tests. To gener-

ate ideal comparison images, we ran a path tracer for

up to fifteen hours for each image. This means even

though our optimization adds bias, its error result was

calculated against an unbiased image, which makes our

results even more impressive. To speed up the testing

process and create a constant memory demand, each

image was rendered at a resolution of about 2562 pix-

els. We ran the test on a quad core CPU with 16GB of

RAM.

For each scene we graphed error versus the num-

ber of rays per pixel for path tracing with and with-

out our optimizations. By comparing these curves, we

found the ratio of how much faster graph-based global

illumination converged. If the ratio was less than 1 (i.e.

<100%), then graph-based global illumination sped up

path tracing. A result of .5 (i.e. or 50%) meant that

graph-based global illumination would have arrived at

the same level of error as path tracing in only half the

time. In every scene the ratio was less than one, mean-

ing graph-based global illumination sped up the conver-

gance of path tracing in every test scene. On average,

our path tracer optimized with graph-based global illu-

mination acheived convergance in about half the time.

Scenes with large specular reflections ran particu-

larly fast in graph-based global illumination because it

is designed to reuse information after it has been ren-

dered. If a wall is shown on the left part of an image (as

in Table 1a) and the reflection of the wall appears on the

right, then there will be a large amount of information

reuse. Graph-based global illumination also excelled at

scenes with diffuse bleeding since there is so much in-

formation that can be reused without adding significant

bias. These results validate our contributions since they

show that using repeated light samples can reduce the

variance in global illumination and they show in prac-

tice how this can be done quickly.

In future work we would like to reduce the memory

requirements for large images. If this can be done, then

our algorithm’s speed-up could be used on machines

with less RAM or on images with a large resolution.

Also, we are interested in the advantages of interpo-

lating radiance transfer values across voxels on diffuse

surfaces with slow changes in luminance. Finally, we

are excited to see how much faster other ray casting

algorithms, like Metropolis Light Transport and bidi-

rectional path tracing, converge when optimized with

graph-based global illumination.

References

1. Bekaert, P., Sbert, M., Halton, J.: Accelerating path trac-
ing by re-using paths pp. 125–134 (2002)

2. Christensen, P., Lischinski, D., Stollnitz, E., Salesin, D.:
Clustering for glossy global illumination. ACM Transac-
tions on Graphics (TOG) 16(1), 33 (1997)

3. Cohen, M.F., Chen, S.E., Wallace, J.R., Greenberg, D.P.:
A progressive refinement approach to fast radiosity image
generation. SIGGRAPH Comput. Graph. 22(4), 75–84
(1988)

4. Dutre, P., Bekaert, P., Bala, K.: Advanced global illumi-
nation. AK Peters, Ltd. (2006)

5. Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile,
B.: Modeling the interaction of light between diffuse sur-
faces. SIGGRAPH ’84 18(3), 213–222 (1984)

6. Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive pho-
ton mapping. ACM Trans. Graph. 27(5), 1–8 (2008)

7. Jensen, H.W.: Realistic Image Synthesis Using Photon
Mapping. A K Peters, Ltd. (2001)

8. Kajiya, J.: The rendering equation. In: Proceedings of
the 13th annual conference on Computer graphics and
interactive techniques, pp. 143–150. ACM (1986)

9. Lafortune, E., Willems, Y.: Bi-directional path tracing.
In: Compugraphics 93, pp. 145–153 (1993)

10. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radi-
ance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In: SIGGRAPH ’02,
pp. 527–536. ACM, New York, NY, USA (2002)

11. Veach, E., Guibas, L.: Metropolis light transport. Pro-
ceedings of the 24th annual conference on Computer
graphics and interactive techniques pp. 65–76 (1997)

12. Ward, G., Rubinstein, F., Clear, R.: A ray tracing solu-
tion for diffuse interreflection. ACM SIGGRAPH Com-
puter Graphics 22(4), 85–92 (1988)


